Effects of maternal immune activation on adult brain neurobiology

Ryan J Duchatel

BBiomedSci (Hons)

Thesis

submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy (Experimental Pharmacology)

University of Newcastle, Australia

June 2018

This research was supported by an Australian Government Research Training Program (RTP) Scholarship

Declaration of Originality

Statement of Originality

I declare that this thesis has been submitted in accordance with the University of Newcastle's plagiarism policy. To the best of my knowledge, all material contained within this thesis is an original product, which does not contain any material previously produced by another, except where acknowledged within the text. I give consent to this copy of my thesis, when deposited in the University of Newcastle Library, being made available for loan or photocopying subject to the provisions of the Copyright Act 1968.

Statement of Collaboration

I hereby certify that the work embodied in this thesis has been done in collaboration with other researchers. I have included as part of the thesis a statement clearly outlining the extent of collaboration, with whom and under what auspices.

Statement of Authorship and Thesis by Publication

I hereby certify that this thesis is in the form of a series of published scientific papers in peer-reviewed and refereed journals, of which I am a primary or coauthor. I have included as part of this thesis, a written statement from each coauthor, endorsed by the Deputy Head of Faculty (Research and Research Training), attesting to my significant contribution to the publications presented.

____/___/_____

Ryan J Duchatel

Date

Acknowledgements

It is impossible to thank and acknowledge everyone who has helped, shaped and guided me to where I am today; though a select number of people have made outstanding contributions worthy of special mention.

Paul Tooney, my primary PhD supervisor, has mentored me from a budding first year biomedical science undergraduate student in 2010, through to a volunteer undergraduate, technical assistant, undergraduate research project, honours, and finally this PhD. Paul and I haven't always seen eye to eye, but he has always sought what was best for me. He has not only supported me academically, but also personally; and guided me through difficult times in which I thought I may not continue with research. I hope that we can one day collaborate on another project.

Matt Dun, thank you for taking a gamble on me and helping re-ignite my passion for science and research. Your commitment to research and your work is second to none. I have immense respect for you and hope to build my career off the same ethic.

My family: John, Jonette, Jordan, Sergei and Vlad. Always there for me, doing the little things that make a huge difference which has allowed me to focus on my work and hobbies. Thank you very much.

iii

Abstract

Prenatal immune challenge is an environmental risk factor for the development of psychiatric illnesses including schizophrenia. Modelling this epidemiological link in animals shows that maternal immune activation (MIA) is capable of inducing long-lasting changes in brain structure, function and behaviour in the offspring; which is very promising for elucidating the underlying mechanisms for schizophrenia. Indeed, one interesting anatomical finding within schizophrenia research is an increased density of neurons residing in the white matter under grey matter cortical regions. These interstitial white matter neurons (IWMNs) have been hypothesised to have a number of neural origins, but the role they play in the underlying schizophrenia aetiology is unknown. Chapter 1 introduces schizophrenia and presents an in-depth literature review on the changes to IWMNs in schizophrenia. Chapter 1 then presents the evidence for MIA and its relationship to schizophrenia. However, to fully elucidate their role in disease pathogenesis an animal model is necessary to study IWMNs in an environment other than human post-mortem brain.

In Chapter 2, the aim was to characterise IWMNs subjacent to the frontal cortex of the adult rodent brain, including markers and location, and then examine if MIA affected the density of IWMNs in this model. MIA was induced by early or late gestation exposure of pregnant rats to polyriboinosinic-polyribocytidylic acid (PolyI:C) with IWMN density assessed in the adult rat offspring. While NeuN+ IWMNs trended to be increased by this model, both early (gestational day 10; GD10) and late (GD19) gestation MIA induced a significant increase in somatostatin positive (SST+) IWMN density in the white matter of the corpus

iv

callosum. Interestingly the increase in SST+ IWMN density was regionally more widespread in those rats exposed to MIA at GD19. These changes are similar to that observed in post-mortem brain studies of schizophrenia. This established an animal model of increased white matter neuron density induced by a known risk factor for schizophrenia. Then in Chapter 3 the aim was to determine if other IWMN subtypes were altered by MIA. The density of both NPY+ IWMNs and GAD+ IWMNs was examined but neither were affected by MIA – suggesting that SST+ IWMNs are particularly susceptible to MIA. Chapter 3 also provided a gene expression analysis to determine if MIA affected cortical GABAergic gene expression.

The role of an abnormal immune system in schizophrenia has recently come to light. Alterations in immune related genes within the cortex of people with schizophrenia has provided an underlying "immune signature" in the disease. Furthermore, studies of post-mortem brains in schizophrenia have identified changes to glia, the brain's immune cells. I hypothesised that the MIA-induced increase in IWMNs reported in Chapter 2 may be driven by inflammation in the cortex reflected by alterations in glial cells and inflammatory gene expression. In Chapter 4 I tested this hypothesis by examining inflammatory gene expression and immunohistochemistry for microglia and astrocytes in the brains of rats exposed to MIA induced by PolyI:C. Whilst there were no changes in cortical inflammatory gene expression, a significant increase in microglia (Iba1+) immunoreactivity was observed in the white matter of the corpus callosum, but not the cingulate cortex, suggesting that disrupted microglia were specific to the white matter. Furthermore, no alterations in astrocyte (GFAP+) immunoreactivity

V

Abstract

was identified in rats exposed to MIA, which is congruent with current literature on their role in schizophrenia.

Further links to immune dysfunction in schizophrenia came from a groundbreaking discovery by Sekar et al. (2016), who identified a significant association of the complement component 4 (C4) gene with schizophrenia and that people with schizophrenia have a significant increase in the expression of the complement component 4 (C4) gene. In Chapter 5 I showed that this alteration in cortical C4 gene expression was also present in the cingulate cortex of rats exposed to MIA at late gestation.

In summary the data in this thesis provides a link between white matter pathology, including increased white matter neurons, and increased microglia reactivity, with cortical innate immune system gene expression changes. Finally, this thesis provides a discussion, summarising the work presented within, linking MIA with increased IWMN density, increased microglial reactivity in the white matter and cortical changes in C4 gene expression.

Table of Contents

Declaration					
Acknowledgments					
Abstra	Abstract				
Table of Contents					
List of Abbreviations					
Chapt	er 1: Ir	ntroduction	1		
	1.1	Introduction	2		
	1.2	Grey and white matter pathology in schizophrenia	3		
	1.3	White matter neurons – Neurobiology and Neurochemistry	6		
	1.4	White matter neurons in schizophrenia	11		
	1.5	Neurodevelopmental hypothesis of schizophrenia	17		
	1.6	Modelling maternal immune activation using PolyI:C	18		
	1.7	Microglia, neuroinflammation and mechansims of action in			
		maternal immune activation	22		
	1.8	Rationale	25		
	1.9	Aims and Hypotheses	26		
	1.10	List of publications	28		
Chapt	er 2: E	ffects of maternal immune activation on somatostatin po	sitive		
white	matter	neurons	29		
	Statement of Contribution 3				
	Publication: Increased white matter neuron density after maternal				
	immune activation – Implications for schizophrenia 31				
	Supplementary Figures 40				

Chap	ter 3: E	Effects of MIA on the density of additional white matter ne	uron		
subty	pes		43		
	3.1	Introduction	44		
	3.2	Methods	47		
	3.3	Results	52		
	3.3	Discussion	62		
Chap	ter 4: E	Effects of maternal immune activation on glial cells	67		
	Stater	nent of Contribution	68		
	Publication: Late gestation maternal immune activation increases IBA1				
	offspri	re immunoreactivity levels in the corpus callosum of adult rat	70		
		ementary Figures	81		
-		Complement component 4: Linking immune activation and			
SCNIZ	ophren		84 85		
	Statement of Contribution				
	Publication: Increased complement component 4 (C4) gene expression				
		ater gestation maternal immune activation	87		
	Supple	ementary Figures	90		
Chapter 6: Thesis discussion			91		
	6.0	Summary	92		
	6.1	White matter neurons in schizophrenia	93		
	6.2	Underlying mechanisms for increased white matter neuron			
		density	96		
	6.3	Neuroinflammation and MIA	100		
	6.4	Limitations of modelling human pathologies in rodents	103		
	6.5	Future directions	104		
	6.6	Conclusion	108		
Refer	ences		109		

List of Abbreviations

BA	Brodmann's area
ChR	channelrhodopsin
СС	cingulate cortex
Cr	calretinin
CWM	cingulate white matter
DA	dopamine
DCX	doublecortin
DLPFC	dorsal lateral prefrontal cortex
DSM-V	diagnostic and statistical manual, fifth version
DTI	diffusor tensor imaging
eGFP	enhanced green fluorescent protein
EPS	extrapyramidal syndrome
GABA	γ-aminobutyric Acid
GAD	glutamic acid decarboxylase
GAT-1	GABA transporter
GD	gestational day
GSEA	gene set enrichment analysis
GWAS	genome wide association study
ICD10	tenth revision of the international classification of disease
IPC	inferior parietal cortex
IWMN	interstitial white matter neuron
MAP2	microtubule associated protein 2
MIA	maternal immune activation
mPFC	medial prefrontal cortex
MRI	magnetic resonance imaging
NADPH	nicotinamide-adenine dinucleotide phosphate-diaphorase
NeuN	neuronal nuclei
NMDA	N-methyl-D-aspartate
nNOS	neuronal nitric oxide synthase
NR	not reported
NPY	neuropeptide Y
OFC	orbitofrontal cortex

List of Abbreviations

PET	positron emission topography
PHG	para hippocampal gyrus
PND	postnatal day
PolyI:C	polyriboinosinic-polyribocytidylic acid
Pv	parvalbumin
RelN	reelin
SD	standard deviation
SST	somatostatin
vGAT	vesicular GABA transporter
vGLUT	vesicular glutamate transporter