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Abstract  

 

Prenatal immune challenge is an environmental risk factor for the development 

of psychiatric illnesses including schizophrenia. Modelling this epidemiological 

link in animals shows that maternal immune activation (MIA) is capable of 

inducing long-lasting changes in brain structure, function and behaviour in the 

offspring; which is very promising for elucidating the underlying mechanisms for 

schizophrenia. Indeed, one interesting anatomical finding within schizophrenia 

research is an increased density of neurons residing in the white matter under 

grey matter cortical regions. These interstitial white matter neurons (IWMNs) 

have been hypothesised to have a number of neural origins, but the role they play 

in the underlying schizophrenia aetiology is unknown. Chapter 1 introduces 

schizophrenia and presents an in-depth literature review on the changes to 

IWMNs in schizophrenia. Chapter 1 then presents the evidence for MIA and its 

relationship to schizophrenia. However, to fully elucidate their role in disease 

pathogenesis an animal model is necessary to study IWMNs in an environment 

other than human post-mortem brain.  

 

In Chapter 2, the aim was to characterise IWMNs subjacent to the frontal cortex 

of the adult rodent brain, including markers and location, and then examine if MIA 

affected the density of IWMNs in this model.  MIA was induced by early or late 

gestation exposure of pregnant rats to polyriboinosinic-polyribocytidylic acid 

(PolyI:C) with IWMN density assessed in the adult rat offspring. While NeuN+ 

IWMNs trended to be increased by this model, both early (gestational day 10; 

GD10) and late (GD19) gestation MIA induced a significant increase in 

somatostatin positive (SST+) IWMN density in the white matter of the corpus 
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callosum. Interestingly the increase in SST+ IWMN density was regionally more 

widespread in those rats exposed to MIA at GD19. These changes are similar to 

that observed in post-mortem brain studies of schizophrenia. This established an 

animal model of increased white matter neuron density induced by a known risk 

factor for schizophrenia. Then in Chapter 3 the aim was to determine if other 

IWMN subtypes were altered by MIA. The density of both NPY+ IWMNs and 

GAD+ IWMNs was examined but neither were affected by MIA – suggesting that 

SST+ IWMNs are particularly susceptible to MIA. Chapter 3 also provided a gene 

expression analysis to determine if MIA affected cortical GABAergic gene 

expression. 

 

The role of an abnormal immune system in schizophrenia has recently come to 

light. Alterations in immune related genes within the cortex of people with 

schizophrenia has provided an underlying “immune signature” in the disease. 

Furthermore, studies of post-mortem brains in schizophrenia have identified 

changes to glia, the brain’s immune cells. I hypothesised that the MIA-induced 

increase in IWMNs reported in Chapter 2 may be driven by inflammation in the 

cortex reflected by alterations in glial cells and inflammatory gene expression. In 

Chapter 4 I tested this hypothesis by examining inflammatory gene expression 

and immunohistochemistry for microglia and astrocytes in the brains of rats 

exposed to MIA induced by PolyI:C. Whilst there were no changes in cortical 

inflammatory gene expression, a significant increase in microglia (Iba1+) 

immunoreactivity was observed in the white matter of the corpus callosum, but 

not the cingulate cortex, suggesting that disrupted microglia were specific to the 

white matter. Furthermore, no alterations in astrocyte (GFAP+) immunoreactivity 
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was identified in rats exposed to MIA, which is congruent with current literature 

on their role in schizophrenia. 

 

Further links to immune dysfunction in schizophrenia came from a ground-

breaking discovery by Sekar et al. (2016), who identified a significant association 

of the complement component 4 (C4) gene with schizophrenia and that people 

with schizophrenia have a significant increase in the expression of the 

complement component 4 (C4) gene. In Chapter 5 I showed that this alteration 

in cortical C4 gene expression was also present in the cingulate cortex of rats 

exposed to MIA at late gestation. 

 

In summary the data in this thesis provides a link between white matter pathology, 

including increased white matter neurons, and increased microglia reactivity, with 

cortical innate immune system gene expression changes. Finally, this thesis 

provides a discussion, summarising the work presented within, linking MIA with 

increased IWMN density, increased microglial reactivity in the white matter and 

cortical changes in C4 gene expression. 
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